Induction of PR-1 accumulation accompanied by runaway cell death in the lsd1 mutant of Arabidopsis is dependent on glutathione levels but independent of the redox state of glutathione.

نویسندگان

  • Kaori Senda
  • Ken'ichi Ogawa
چکیده

The lesions simulating disease (lsd) mutants of Arabidopsis spontaneously develop hypersensitive-response-like lesions in the absence of pathogens. To address the function of the redox regulator glutathione in disease resistance, we examined the relationship between endogenous glutathione and PR-1 accumulation using one of these mutants, lsd1, as a disease resistance model. Lesion formation on lsd1 was suppressed by weak light and initiated by the subsequent transition to normal light. The application of buthionine sulfoximine, a specific inhibitor of glutathione biosynthesis, suppressed conditionally induced runaway cell death and expression of the PR-1 gene, suggesting that glutathione regulates the conditional cell death and PR-1 gene expression. The application of reduced (GSH) or oxidized (GSSG) glutathione to lsd1 upregulated the level of total glutathione ([GSH]+[GSSG]) accompanied by hastened accumulation of PR-1, and the basal level of total glutathione in lsd1 was higher than that in wild-type plants. The glutathione redox state defined as [GSH]/([GSH]+[GSSG]) decreased following the conditional transition, but the suppression of this decrease by the application of GSH did not inhibit the accumulation of PR-1. Taken together, conditional PR-1 accumulation in lsd1 is regulated not by the redox state but by the endogenous level of glutathione.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Roles of LESIONS SIMULATING DISEASE 1 and Salicylic acid in Acclimation of Plants to Environmental Cues Redox homeostasis and physiological processes underlying plants responses to biotic and abiotic challenges

P.1 ABBREVIATIONS – P.2 LIST OF PAPERS – P.5 INTRODUCTION. 1 The photosynthetic processes – P.7 1.1 Light reactions. 1.2 Carbon reactions. 2 Regulation of photosynthetic processes – P.8 2.1 Non photochemical dissipation mechanisms. 2.2 Photochemical dissipation mechanisms. 3 Reactive oxygen species (ROS) and antioxidant system – P.11 3.1 ROS production sites and homeostasis. 3.2 Low molecular w...

متن کامل

LESION SIMULATING DISEASE1 interacts with catalases to regulate hypersensitive cell death in Arabidopsis.

LESION SIMULATING DISEASE1 (lsd1) is an important negative regulator of programmed cell death (PCD) in Arabidopsis (Arabidopsis thaliana). The loss-of-function mutations in lsd1 cause runaway cell death triggered by reactive oxygen species. lsd1 encodes a novel zinc finger protein with unknown biochemical activities. Here, we report the identification of CATALASE3 (CAT3) as an lsd1-interacting ...

متن کامل

Vulnerability of Prepubertal Mice Testis to Iron Induced Oxidative Dysfunctions In Vivo and Functional Implications

Background The present study describes the susceptibility of prepubertal testis of mice to prooxidant induced oxidative impairments both under in vitro and in vivo exposure conditions. MaterialsAndMethods Following in vitro exposure to iron (5,10 and 25 M), oxidative response measured in terms of lipid peroxidation and hydroperoxide levels in testis of pre pubertal mice (4 wk) was more robust c...

متن کامل

Runaway cell death, but not basal disease resistance, in lsd1 is SA- and NIM1/NPR1-dependent.

LSD1 was defined as a negative regulator of plant cell death and basal disease resistance based on its null mutant phenotypes. We addressed the relationship between lsd1-mediated runaway cell death and signaling components required for systemic acquired resistance (SAR), namely salicylic acid (SA) accumulation and NIM1/NPR1. We present two important findings. First, SA accumulation and NIM1/NPR...

متن کامل

The radical induced cell death protein 1 (RCD1) supports transcriptional activation of genes for chloroplast antioxidant enzymes

The rimb1 (redox imbalanced 1) mutation was mapped to the RCD1 locus (radical-induced cell death 1; At1g32230) demonstrating that a major factor involved in redox-regulation genes for chloroplast antioxidant enzymes and protection against photooxidative stress, RIMB1, is identical to the regulator of disease response reactions and cell death, RCD1. Discovering this link let to our investigation...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant & cell physiology

دوره 45 11  شماره 

صفحات  -

تاریخ انتشار 2004